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Abstract 
While the B-tree (or the B+-tree) is the most popular index 
structure in disk-based relational database systems, the T-
tree has been widely accepted as a promising index 
structure for main memory databases where the entire 
database (or most of them) resides in the main memory.  
However, most work on the T-tree reported in the literature 
did not take concurrency control into consideration.  In this 
paper, we report our study on the performance of the main 
memory database index structure that allows concurrent 
accesses of multiple users. Two concurrency control 
approaches over the T-tree are presented.  The results of a 
simulation study indicate that the B-link tree, a variant of 
the widely used B-tree index will outperform the T-tree if 
concurrency control is enforced. This is due to the fact that 
concurrency control over a T-tree requires more lock 
operations than that of a B-link tree, and the overhead of 
locking and unlocking is high.  
 
 
1. Introduction 

 
For the past decade, an important assumption of 

database research and development is that most of the data 
of a database are on disk. With the advent of the hardware 
technology, computer systems with main memory size in 
the order of magnitude of gigabytes are available 
nowadays. The increasing availabili ty of large and 
relatively cheap memory makes it possible to have main 
memory databases (MMDB) where all data reside in main 
memory, which provides significant additional 
performance benefits as shown in [8, 16]. In fact, MMDB 
has been receiving the attention of database researchers for 
the past decade [6, 1, 3, 10, 17, 4]. 

When the entire database resides in the main memory, 
related techniques developed under the assumption of disk 
I/O as the main cost of database operations should be re-

examined. Among the others, index structures that affect 
the overall system performance heavily has been one of the 
research focuses. In the early 90's, Lehman and Carey 
proposed the T-tree as an index structure for main memory 
database [15]. Because of its good overall performance, the 
T-tree has been widely accepted as a major MMDB index 
structure. It was adopted by several systems, including the 
main memory relation manager (MMM ) of the Starburst 
system from IBM Almaden Research Center [17] and the 
Dali system from the AT&T Bell Laboratories [11, 4, 22].  

The work reported in this paper is motivated by our 
observation that, in contrast to a large amount of research 
work on the concurrent B-tree [5, 19, 23, 18, 20, 12, 13, 
24], little work has been reported on the study of the 
concurrent T-tree [14, 17, 8].  As pointed by Lehman et al. 
[17] and Gottemukkala et al. [8], once the I/O bottleneck of 
paging data into and out of the main memory are removed, 
some other factors such as latching and locking dominate 
the cost of database access.  Since the concurrent access of 
the T-tree may require latching and locking intensively, the 
performance of the T-tree should be somehow affected in 
such an environment. Although previous work has 
demonstrated that the T-tree provides a better performance 
than the B-tree [15], the performance study did not 
consider the effects of concurrent access of the indexes. 

In this study, we have investigated the performance 
issue of the T-tree when the concurrent access from 
multiple users is allowed. Motivated by the good 
performance of the B-link tree [19, 23, 18], we modified 
the T-tree into the T-tail tree. The T-tail tree allows an 
extra tree node to be linked to a T-tree node when the T-
tree node overflows, to delay the tree rotating operation. 
Two concurrency control mechanisms were proposed. A 
performance study was conducted to compare the 
performance of the T-tail tree and the B-link tree. To our 
surprise is that the T-tail tree, and hence the T-tree, does 
not provide a better performance than the B-link tree 



because of the high cost of locking and unlocking required 
to enforce concurrency control. 

The rest of this paper is organized as follows. Section 2 
describes the T-tail tree index structure and its concurrent 
access algorithms.  A simulation model, experiments 
conducted, and the results are given in Section 3. Finally, 
Section 4 concludes the paper.  

 
2. T-tree, T-tail tree and concurrent  
operations 
 

In this section, we first briefly describe the structure of 
the T-tree index and its variation, the T-tail tree. 
Afterwards, we propose two mechanisms that allow 
concurrent operations including both search and 
modification on the tree while maintaining the consistency. 

 
2.1. T-tree and T-tail tree  
 

The T-tree [15], rooted in the AVL tree [2] and the B-
tree [5], is a balanced binary tree whose nodes contain 
more than one item. Figure 2.1 (a) depicts a T-node, a node 
of a T-tree. A T-node consists of a number of data pointers, 
three data fields, 1 parent pointer, 0-1 tail pointer, and 0-2 
child pointers. An internal T-node has two child pointers 

pointing to its left and right subtrees, respectively.  A leaf 
T-node has no child pointers.  A T-node may have only one 
child pointer and is called half-leaf node. The data pointers 
in a T-node point to the corresponding data entries in the 
memory, thus through the data pointers, the corresponding 
data entries and their keys can be accessed. There are also 
two special fields minK and maxK in each T-node that store 
the minimum and maximum key values in the node, 
respectively. For a node T and a value K, if minK ≤ K ≤ 

maxK, then we say that node T bounds the value K. 
Another special data field is the balance factor, bf, which is 
the value of the right subtree height minus the left subtree 
height. The height of a tree is defined to be its maximum 
level, the length of the longest path from the root to a leaf 
node. Since a T-tree is a balanced binary tree, the balance 
factor, bf, can only be +1, 0, or –1. For each internal node 
A, there exists a corresponding leaf (or half-leaf) node that 
holds a data pointer to the data entry with a key value that 
is the predecessor to the minK of A. This node is named the 
predecessor of A. Similarly, the node holding the data 
pointer to the data entry with a key value that is the 
successor to maxK of A, is called the successor of A.  

A minimum count and a maximum count are associated 
with a T-tree. Internal nodes keep their occupancy (i.e. the 
number of data pointers in the node) in this range. When 
the number of data pointers in a node is smaller than the 
minimum count or larger than the maximum count, the 
node is said to be underflow or overflow, respectively. In 
general, a node is not full . That is, the number of data 
pointers in it is kept less than the node size, the maximum 
number of data pointers a node can have. During the 
insertion operation, the corresponding data pointer will be 
inserted into the node that bounds the key value of the 
entry. When a data pointer is to be inserted into a node that 
is full, it may cause inserting a new node into the tree.  
Inserting a new node not only requires redistributing data 
pointers between the overflowed node and the new node, 
but also require moving the nodes around, i.e., to rotate the 
tree to keep the tree balance. Similarly, deletions may 
cause node underflow or empty, which may give rise to the 
deletion of a node. Deleting a node may also cause the tree 
to be rotated for keeping the balance.  

Frequent tree rotations wil l degrade system 
performance. In observation of that tree rotations are 
induced by node overflow and underflow, which are 
consequences of insertion or deletion in nodes with fixed 
size, we allow the node size to be changed dynamically. In 
our implementation, a T-node is allowed to have one T-tail, 
in which some data pointers can be inserted. A T-tail bears 
the same structure as a T-node, but only its data pointer 
storage space is used.  During an insertion operation, if the 
node is full , a tail  is created for it, and then all insertions on 
the node can be operated on its tail . A T-node is said to be 
completely full if both the T-node itself and its tail are full. 
Fully tail will be inserted into the tree as a new T-node 
later. If a deletion causes the node underflow, then data 
pointers in its tail wil l be moved into it and empty tail will 
be deleted. Note that data pointers in the T-node and its tail 
are sorted by the key values of the corresponding data 
entries. Also minK and maxK of the T-node should bound 
all the key values of the corresponding data entries with 
pointers in the T-node and its tail. We name such index 
structure T-tail tree. A T-tail is given in Figure 2.1 (b). It is 
expected that our implementation will reduce the 
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         Figure 2.1 Structure of a T-node 
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possibility of tree rotations, hence increasing the 
performance [21].     

To enforce concurrent access over a T-tail tree, we 
employ a locking mechanism. For simplicity, we use only 
three types of locks, the shared lock (S-lock), the shared 
and intention exclusive lock (SIX-lock), and the exclusive 
lock (X-lock), which were originally used in hierarchical 
locking protocols [9]. Their compatibili ty relations are the 
same as in the original work. That is, shared locks are 
compatible with themselves and shared and intention 
exclusive locks. Exclusive locks are incompatible with 
themselves and all other locks. Shared and intention 
exclusive locks are compatible with shared locks but 
incompatible with themselves.  

We propose two approaches to enforce concurrent 
access over a T-tail tree; one is pessimistic and the other is 
optimistic. For the pessimistic approach, it is assumed that 
confli cts among tree operations are inevitable and lead to 
undesirable situations, such as creating inconsistent data or 
deadlock. Each concurrent operation tries to prevent the 
happening of such situations. In this approach, search 
operation use lock-coupling in their descent from the root 
to the bounding node, the node that bounds the key value of 
the data entry in the operation. During update operation 
(insertion or deletion), all nodes on the way from the parent 
of the critical node to the bounding node are locked using 
SIX-locks to prepare for a possible tree rotation. A critical 
node is the nearest ancestor of the bounding node whose 
balance factor equals to 1 or –1. If a tree rotation does 
occur later, all these SIX-locks will be converted to X-
locks. Actually, tree rotations rarely happen over the T-tail 
tree. Thus this approach handles concurrent access over the 
tree in a pessimistic way. In the other extreme, the 
optimistic approach assumes that concurrent operations 
over a T-tail tree do not interfere with each other, and it 
allows operations to complete without worrying about 
possible conflicts. If the bounding node is completely full 
during insertion, the whole tree will be exclusively locked 
by the operation and the tree is fixed. During tree fixing, all 
the T-tails are inserted to its successor as a T-node, and 
empty nodes and tails are deleted. In the following two 
sections, we will present the algorithms for the two above-
mentioned approaches. 

 
2.2. The pessimistic approach 

 
As the T-tree, and hence the T-tail tree, is evolved from 

the AVL tree, the pessimistic concurrent operations over 
them are similar to those on the AVL tree [7]. A search 
gets an S-lock on the root first. Then it searches down from 
the root to the bounding node and lock-couples its way 
with S-locks. Finally it searches the bounding node. During 
an update operation, the updater first takes the root as a 
potential critical node and gets an SIX-locks on it. Then it 
searches down from the root and gets an SIX-lock on each 

node on the way. If a new node whose balance factor is not 
equal to 0 is found, then this node is taken as the potential 
critical node. All SIX-locks on the ancestors of the parent 
of this potential critical node are released. Finally, an X-
lock should be obtained on the bounding node and the 
operation is performed on it. Later on, if a tree rotation 
occurs, all the SIX-locks on the nodes from the parent of 
the critical node to the bounding node wil l be converted to 
X-locks and the tree is rotated. The algorithms are 
described in the followings.   

Search. The concurrent searching in a T-tail tree is 
similar to searching in an AVL tree. The main differences 
are that the locking mechanism has to be used and the tail 
has to be searched. The algorithm works as follows: 
(1) The search always starts at the root of the tree, and an 

S-lock should be gotten on the root first. 
(2) Search down from the root and lock-couple the way 

using S-locks. 
(3) If the search key value is less than the minK of the 

current node, then search down its left-subtree. Else, 
if the search key value is greater than the maxK of the 
current node, then search down its right-subtree. Else, 
search the current node and its tail (if any). 

(4) After the search is performed, the S-lock on the 
current node should be released. 

The search fails when a node and its tail (if any) are 
searched and the corresponding data pointer cannot be 
found or when a node that bounds the search key value 
cannot be found.  

Insertion. The insertion operation uses SIX-locks and 
X-locks to enforce concurrency control. It begins with a 
search to locate the bounding node. If the bounding node is 
not completely full, the data pointer to the data entry is 
inserted into the bounding node. Else, if the bounding node 
is completely full, then its tail will be removed from the 
bounding node and inserted into its successor as a new T-
node. The pointer is inserted into either the original 
bounding node or the new T-node, depending on which one 
bounds its key value. The balance of the tree is checked 
then. If the T-tail tree is unbalanced as a consequence of 
the insert operation, a tree rotation wil l be performed. 
During this process, many locking, unlocking, and lock 
converting steps are involved. We describe the insertion 
algorithm in more details as follows: 
(1) The search starts at the root of the tree, an SIX-lock  

is placed on the root, and takes the root as a potential 
critical node. 

(2) Search down the tree for the bounding node. During 
this process, all nodes from the parent of the critical 
node to the bounding node are locked using SIX-
locks. If some node whose balance factor is not 0 is 
found on the way, this node becomes the potential 
critical node. All the SIX-locks on the ancestors of the 
parent of this new potential critical node will be 
released. If the search exhausts the tree and no node 



bounds the key value of the data entry, the last node 
on the search path is assigned as the bounding node.  

(3) If the bounding node is found and is not completely 
full, the SIX-lock on the bounding node is converted 
to the X-lock and the corresponding data pointer is 
inserted into it. Release all the locks and terminate.  

(4) If the bounding node is completely full, then search 
for the successor of the bounding node li ke in (2) but 
the lock on the bounding node is kept. Then the SIX-
locks on the bounding node and the successor are 
converted into the X-locks. The tail of the bounding 
node is moved off and inserted into the successor as a 
leaf node. The data pointer wil l be inserted into the 
bounding node or the new child node, depending on 
which one bound the searched key value. Then the 
balance of the tree is checked. 

(5) If a new leaf was added, then check the tree for 
balance by following the path from the leaf to the 
critical node. For each node on the way from the leaf 
to the critical node, if the two subtrees of a node differ 
in depth by more than two levels, then the SIX-locks 
on the nodes from the parent of the critical node to the 
current node are converted into X-locks and a tree 
rotation must be performed. Once one rotation is 
done, the tree is rebalanced. Release all the locks and 
terminate. 

Deletion. The deletion algorithm works similar as the 
insertion algorithm in the way of locking and processing. 
During the operation, the data pointer to be deleted is 
searched for, the operation is performed, and then 
rebalancing is done if necessary. If the deletion does not 
cause an underflow, then simply delete the data pointer. If 
it causes an underflow in an internal node, then borrow the 
data pointer to the data entry with maximum key value in 
its predecessor. Otherwise, if a deletion makes some leaf 
node empty, the node will  be deleted, the tree should be 
rebalanced, and rotated if necessary. The algorithm works 
as follows: 
(1) and (2) are the same as in the insertion algorithm. If 

the bounding node cannot be found, end with failure. 
(3) If the bounding node is found and the deletion will 

not cause it underflow, the SIX-lock on the bounding 
node converted into the X-lock. The data pointer to 
the corresponding data entry is deleted from it. 
Release all the locks and terminate. 

(4) If the bounding node is an internal node and the 
deletion wil l makes it underflow, then search for the 
predecessor of the bounding node like in (2) but the 
lock on the bounding node is kept. All the SIX-locks 
on the nodes from the bounding node or the parent of 
the critical node to the predecessor are converted into 
the X-locks. The data pointer to the data entry with 
the maximum key value in the predecessor is moved 
to the bounding node. If the predecessor is a leaf and 

the deletion makes it empty, then the operation deletes 
it and the balance of the tree is checked. 

(5) If the bounding node is not an internal and the 
deletion makes it empty, then delete the leaf node or 
replace the half-leaf with its left child. Then the 
balance of the tree is checked. 

(6) If a leaf was removed, then check the tree for balance 
as in (5) of the insertion algorithm. 

The tree balancing and rotating are the same as in [15], 
thus we omit it here.  

 
2.3. Optimistic approach 

 
For the optimistic approach, at most one node is locked 

at a time by an update operation, and search operation does 
not lock any node at all. It allows empty nodes existing in 
the tree temporarily. Under such condition, operations are 
running with maximum concurrency. Only when we try to 
insert a data pointer into a completely full T-node, the 
whole tree will  be exclusively locked by the operation and 
the tree is fixed. During the fixing phase, all the tail nodes 
created after the last tree fixing are adjusted; empty nodes 
and tails are deleted. Tree balance is checked and rotation 
is done if necessary.  

In this approach, some additional data structures are 
used. One is the fixing flag. It is a logical variable to 
indicate whether the tree is being fixed (fixing flag equals 
to TRUE) or normal used (fixing flag equals to FALSE). 
The count is used to record the number of operations 
currently operating over the tree. A semaphore is used to 
protect fixing flag and count from being operated by more 
than one operation at a time. Three node pointer pools are 
used. One is the New Node Pool (NNP) that is used to 
record the newly created tails after the last tree fixing. The 
second one is the Deallocated Node Pool (DNP) that is 
used to record the empty tail s during the normal tree 
operations. The third one is the Empty Node Pool (ENP) 
that is used to record the empty T-nodes. 

Search. The search operation is quite straightforward. 
Before an operation performs on the tree, it will  first 
acquire a semaphore and check the fixing flag. If the fixing 
flag is set to TRUE, then the operation releases the 
semaphore and waits. Otherwise, it increases the count and 
releases the semaphore. It then starts from the root and 
searching for the bounding node. If the data entry has been 
found, then it acquires the semaphore and decreases the 
count. After releasing the semaphore, the operation ends 
with success. Otherwise, it fails.  

Insertion. The algorithm works as follows: 
(1) The insertion operation searches for the bounding 

node in the same way as the search operation. 
(2) If the bounding node is found, then get an X-lock on 

it. If the node is not completely full, then insert the 
corresponding data pointer into it. If there is a newly 
created tail , record it in the NNP. After releasing the 



lock and decreasing the count, the operation ends with 
success.  

(3) If the node is completely full, then release the lock 
and decrease the count. After setting the fixing flag to 
TRUE and releasing the semaphore, wait until no 
operation performs on the tree. Then fix the tree. 
Finally, after resetting the fixing flag to FALSE, 
resume the operation. 

(4) If the search exhausts the tree and no node bounds the 
key value of the data entry, then the last node on the 
search path is locked using X-locks. If it is not 
completely full , then process it li ke in (2). Otherwise, 
conduct work as in (3).   

Deletion. The deletion works in a straightforward 
fashion. After finding the bounding node, it deletes the 
corresponding data pointer directly. When the deletion 
empties a T-node, it is recorded into the ENP. If the 
deletion makes the tail of the node empty, then record the 
tail node to the DNP to process it in later tree fixing. Note 
that the tail cannot be deleted immediately since there may 
be other operations working on it. It works as follows: 
(1) The deletion operation searches for the bounding node 

in the same way as the search operation. 
(2) If the bounding node is found, then get an X-lock on 

it. Delete the corresponding data pointer from the 
node. If the deletion makes a T-node empty, it is 
recorded in the ENP. If the deletion empties its tail, 
then record the tail into the DNP. After releasing the 
lock and decreasing the count, end with success.  

(3) If the bounding node cannot be found, then release the 
lock and decrease the count. End with failure.  

Tree Fixing. The tree fixing algorithm rearranges the 
tree. It checks the nodes recorded in the NNP to see if the 
node can be merged in some way. Empty nodes in the DNP 
and ENP are deleted. Check the tree balance and conduct 
tree rotation if necessary. The algorithm works as follows: 
(1) For each node in the NNP, try to merge it with its host 

node. If all the data pointers in the tail can be merged 
into its host node, then merge them into the host node 
and the tail is deleted. Else, if the tail cannot be 
merged into its host node, then insert it to the 
successor of its host node. Check the tree for balance 
and rotate the tree if necessary. 

(2) For each node in the ENP, if it is empty, then replace 
it with its predecessor and delete the predecessor. 
Check the tree for balance and rotate the tree if 
necessary. 

(3) For each node in the DNP, if it is empty, then delete 
it. 

 
3. A Performance study 

 
In order to investigate the performance of concurrent 

access over the T-tail tree, a performance study was 
conducted. We implemented the two concurrency control 

approaches described in the previous section. As a 
comparison, operations over the B+-tree [5] and the B-link 
tree algorithms [23] were also implemented. Two groups of 
experiments were conducted. The first group dedicated to 
the performance of operations over the T-tail tree and the 
B+-tree without concurrency control, and the second one 
studied their performance with concurrency controls. The 
algorithms were implemented in C++. All experiments 
were conducted on a Pentium 233 computer with 64M 
memory, running Linux OS in the single user mode. 

 
3.1. Simulation model 

 
Simulation Process. The simulation work consisted of a 

number of experiments. Each experiment conducted in 
three steps. In the first step, a tree was buil t (for different 
experiment, the tree might be a T-tail, B+, or B-link tree) to 
provide basic data structure for the experiment. A set of 
operations (searches, insertions, and deletions) is then 
performed on the tree. Finally, the experiment results were 
collected. 

Tree Initialization. Before each simulation, a tree was 
buil t by inserting 0.5M (Million) data pointers to data 
entries, whose keys were randomly selected from the key 
space of 1 to 1M. To make the tree more realistic, 0.5M 
update operations were then performed. In those operations 
insertion and deletion had even distributions, thus about 
0.25M insertions and the same number of deletions were 
performed on the tree. 

Simulation Model. Our model was a closed-queuing 
model as outlined in Figure 3.1. There are a number of 
terminals and each one performs some operations on the 
tree. Each terminal issues a request, which is one of the tree 
operations (search, insert, and delete). The request is 
inserted into the Waiting CPU Queue (WCQ). The CPU is 
scheduled using a round-robin discipline without 
preemption. When the CPU becomes free, the first request 
in the WCQ is assigned to it. If an operation cannot be 
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        Figure 3.1 Simulation model 



finished in a round, it will be sent to the WCQ again. After 
an operation is committed, the terminal waits for some time 
and submits the next operation again. 

For concurrent operations with concurrency control, a 
lock manager [9] is used to maintain the locks. An 
operation is blocked if it cannot obtain the required lock on 
some resource. Then it is sent to the Waiting Lock Queue 
(WLQ). It will be re-sent to the WCQ when the required 
lock is available.   

Measurements. During the experiments, we mentioned 
the processing time, the tree height, and the number of tree 
nodes. The processing time is the total time requested to 
complete a certain number of operations. 
 
3.2. The CPU cost for each basic operation 

 
A tree operation consists of a number of basic 

operations such as data comparison, pointer assignment, 
arithmetic operation, acquisition and release of semaphore, 
and locking and unlocking. Since all tree operations are 
performed in memory, the processing times for each of 
these basic operations decide the cost of each tree 
operation. Thus it is important to identify the most 
expensive basic operation. We conducted a set of simple 
tests to measure the CPU costs for the five basic operations 
mentioned above. 

 
Table 3.1 CPU cost for each operation 

Basic operations Time (x10-9 seconds) 
Data Comparison 128 
Pointer Assignment 4 
Arithmetic Operation 55 
Acquire and Release semaphore 8947 
Lock and Unlock 17466 
 
We employed a main function that looped to execute 

each operation 1 giga (109) times. Also, an empty function 
was called those times so as to measure the cost of a 
function call . Finally, the cost of the function call was 
subtracted from the cost of the executions of each 
operation. The net cost of each operation is li sted in Table 
3.1  
 
3.3. Experiment results 

 
The experiments were classified into two groups. In the 

first group we investigated the performance of the T-tail 
tree and the B+-tree without concurrency control.  The 
performance of concurrent accesses on the T-tail tree and 
the B-link tree was studied in the second group of 
experiments.  

Performance of Tree Operations without 
Concurrency Control. In this group of experiments, 
operations were completed one by one without 

concurrency. Only one operation was working on the tree 
at any time. Under such settings, the algorithms operated 
on the T-tail tree were almost the same as the original ones 
proposed in [15]. The results of the T-tail tree are denoted 
as the T-tail tree in the figures. For the B-tree, we used the 
standard B+-tree algorithms in [5] (denoted as the B+-tree 
in the figures). The purpose of this group of experiments 
was to study the processing time, the number of nodes, and 
the height of a tree while there was no concurrency control 
enforced. The results are reported as follows. 

Figure 3.2 presents the total processing time required for 
0.5M (5x105) operations. We used a workload that the 
update ratios were varied from 0 to 100%. For update, there 
was the same number of insertions and deletions. In this 
experiment, the fan-out and the size of the leaf node for the 
B+-tree were 10, and the node size of the T-tail tree had the 
same number. From the figure it can be seen that, 
operations on the B+-tree always costs more than those on 
the T-tail tree. The underlying reason is that, during a 
search over the B+-tree, a linear (binary) search is 
performed in every node before going to the next level. In 
the T-tail tree, only two data comparisons (minK and 
maxK) are conducted before going to the next level. Note 
that, without concurrency control, data comparison is the 
most expensive basic operation among the other basic 
operations. With the increase of the number of the update 
operations, node splits and concatenations occur frequently. 
A node split or concatenation will cause a recursive 
insertion or deletion of keys in some nodes, which may 
involve a lot of data comparisons, thus imposes much 
additional cost for the operation. For the T-tail tree, 
rotations occur relatively infrequent and the search cost is 
lower.  

Given 0.5M data entries, Figure 3.3 depicts the numbers 
of nodes for both the T-tail tree and the B+-tree, with 
varying node sizes from 5 to 15. From the figure, we 
observe that the B+-tree has far more nodes than the T-tail 
tree when the node size is small. It is due to the fact that the 
B+-tree puts all data in leaves and all internal nodes are 
taken as index. Compared with the T-tail tree, the B+-tree 

Figure 3.2 Processing time  
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holds additional nodes for indexing. With small node size, 
there should be more leaf nodes than those with larger node 
size. With the increase of node size, the node numbers for 
both trees become smaller.  
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For varying node size, Figure 3.4 gives the tree heights 
of both trees of 0.5M data entries. It is obvious that the T-
tail tree is much higher than the B+-tree. The reason is 
straightforward. Since the T- tail tree is a balanced binary 
tree and at each level there are only two subtrees. In that 
sense, nodes ‘pile up’  much faster than the B+-tree for its 
fanout and leaf node size were 10 in our experiment. For 
operations without concurrency control, it is faster to 
search in the T-tail tree than to search in the B+-tree, since 
the former involves many relatively cheap pointer 
assignments and fewer expensive data comparisons, the 
later employs many expensive data comparisons. While 
operations concurrent perform on the T-tail tree, the higher 
tree height will reduce its performance heavily for the sake 
of locking and unlocking. We wil l show this point in the 
following group of experiments. 
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Performance of Tree Operations with Concurrency 
Control. In this group of experiments we investigated into 
the performance of both the T-tail tree and the B-link tree 
with presence of concurrent operations. A lock manager 
was employed to maintain the lock resources. For the T-tail 
tree, we implemented all the algorithms in both the 
pessimistic and the optimistic approaches presented in 
section 2. The experiment results of the pessimistic 
approach and the optimistic approach are denoted as the T-

tree pessimistic and the T-tree optimistic in the figures, 
respectively. For the B-tree, we implemented the B-link 
tree algorithms [23], whose experiment results are denoted 
as the B-link tree in the figures. In this group of 
experiments, we studied the effects on the processing time 
by varying the update ratio, number of operation, and tree 
size. 

 Figure 3.5 shows the effect on the processing time by 
varying the update ratio. In the experiment, both the T-tail 
tree and the B-link tree had the same number of data 
pointers to data entries, 0.5M. The total number of 
operations conducted on the trees were 0.5M. The node 
size and the fan-out were 10. From the figure, it can be 
seen that, the B-link tree algorithms and the T-tail tree 
optimistic approach (optimistic approach hereafter) are 
much better than the T-tail tree pessimistic approach 
(pessimistic approach hereafter). For different update ratio, 
the processing time for the pessimistic approach varied 
from 136.6 seconds to 140.4 seconds. The time for the 
optimistic approach was from 10.8 seconds to 19.6 
seconds. For the B-link tree algorithms, it was only from 
2.2 seconds to 11.3 seconds. That is, 5 or 10 times more 
eff icient than the algorithms on the T-tail tree. It is because 
pessimistic approach uses many expensive locking and 
unlocking primitives in each operation. Even though the 
optimistic approach uses fewer locking and unlocking, it 
employs acquiring and releasing semaphore, the second 
most expensive primitives. Moreover, it makes the tree 
exclusively locked by some insertion operations, which 
reduces the concurrency of the operations. On the contrary, 
the B-link tree algorithms lock only one node 
simultaneously. 
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Modifying the number of operations, we re-conducted 
the experiments. The experimental results are presented in 
Figure 3.6. The number of operations was varied from 
0.1M to 1M. The workload consisted of search 80% and 
10% each of insertion and deletion. From the figure, it can 
be observed that the relations among these three curves are 
the same as in the previous figure. For different number of 
operations, the processing time for the pessimistic approach 
varied from 27.4 seconds to 274.5 seconds, the time for the 
optimistic approach from 2.5 seconds to 25.1 seconds, and 

Figure 3.3 Number of nodes 

     Figure 3.4 Tree height 
  Figure 3.5 Effect of update ratio 



that for the B-link tree algorithms was from 0.8 seconds to 
8.0 seconds. The reason is that, since the workload and the 
number of data entries in the tree are kept unchanged 
during the experiment, each operation has the same cost in 
each approach. But they are different for different 
approaches. Thus the three curves increase linearly, but 
with different trends. 
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We further varied the tree size and re-tested the algorithms 
on the trees. The result is given in Figure 3.7. In this 
experiment, the tree size was varied from 0.1M to 1M data 
entries. The number of operations was 0.5M, and the 
workload was the same as in the previous experiment. 
From the figure, we observe that the relations among the 
three curves are unchanged also. That is, the B-link tree 
algorithms are the best, then the optimistic approach, and 
the last one is the pessimistic approach. The reason is that, 
with the increment of the tree size, the height of the T-tail 
tree increased, thus giving rise to more overheads of the 
locking and unlocking. On the other hand, the numbers of 
the locking and unlocking in the other two approaches are 
almost not affected by the varying of tree size. Therefore, 
the processing time for the pessimistic approach is 
increased with the growing of the tree size. But the times 
for the other two approaches are almost unchanged.  
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Discussions. The experiments in the first group gave the 
same conclusion as [15]. That is, the T-tail tree performs 
better than B+-tree without concurrency control. However, 
with concurrency control, it seems the B-link tree performs 
better than the T-tail tree, and hence the T-tree. It can be 
explained in the followings. 

Lehman et al. [17] and Gottemukkala et al. [8] pointed 
out that, locking and unlocking are the most expensive 
operations in the main-memory data management system. 
This is actually our test result presented in Table 3.1. Even 
the values may be different for different system, but 
locking and unlocking are several orders of magnitudes 
more expensive than the other operations in our test. A 
natural consequence of this observation is that, in main-
memory environment, any concurrency control mechanism 
with more locking or unlocking should not perform better 
than those with fewer locking and unlocking. 

The pessimistic approach employs many locking and 
unlocking operations. In the search phase, each operation 
locks and unlocks every node on the way once. For update 
operations, they will locks all the nodes from the critical 
node to the bounding node simultaneously. However, for 
the B-link tree algorithms, one update operation locks far 
fewer nodes than that in the pessimistic approach. Even the 
optimistic approach locks fewer nodes also, but it has to 
acquire and release semaphore. Moreover, some insert 
operations may exclusively lock the tree for fixing, which 
decreases the performance. When the whole tree is taken as 
a single node and each operation exclusively locks the 
whole tree during its processing, the B-link tree still 
outperforms the T-tail tree if the update ratio is not very 
high [21]. 

The tree height is another factor that affects the 
performance of the locking and unlocking in the T-tail tree. 
Given a fixed number of data entries, a T-tail tree is much 
higher than its B-link counterpart (see Figure 3.4). This 
always leads to, the existence of a large number of nodes 
on the way between the criti cal node to the bounding node, 
which imposes much cost for the update operations. The 
third factor that makes it difficult for designing 
concurrency control mechanism on a T-tree is that, a tree 
rotation always involves a critical node, which may be far 
away from the bounding node. This makes the locking 
mechanism hard to use and sometimes it has to lock more 
nodes to avoid deadlock or lock conflicts. 

To design concurrency control mechanism over T-trees, 
two factors should be given much concentration. One is the 
number of locks one operation should put on nodes and the 
other is the degree of concurrency. These two factors may 
affect the performance heavily as shown in our 
experiments. 
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4. Conclusions 
 
In this paper we studied the performance of concurrent 

operations over a T-tree, a well-known main memory 
database indexing structure. Two concurrency control 
approaches, the pessimistic approach and the optimistic 
approach were presented.  A simulation model was built to 
investigate the performance of the B-tree and the T-tree 
with different concurrency control approaches. 

Without enforcing concurrency control mechanisms, our 
results conform to the previous reported work. That is, 
when the data reside in memory, the T-tree index does 
outperform the B-tree index. However, when concurrency 
control mechanisms are enforced, both pessimistic and 
optimistic approaches make the T-tree index a worse index 
structure than the B-tree index.  The basic reason is that, 
although the T-tree reduces comparison time within a node, 
the overhead of a large number of locking and unlocking is 
too high. Therefore, unless we can provide better 
algorithms to reduce the number of locks, the concurrent B-
trees wil l outperform the T-trees. 
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