
T-Tree or B-Tree: Main Memory Database Index Structure Revisited∗∗�

Hongjun Lu1 Yuet Yeung Ng Zengping Tian2

Hong Kong University of Science & Technology Fudan University
Hong Kong, China Shanghai, China

{ luhj,enoch} @cs.ust.hk zptian@cs.ust.hk � � �
�
�

������������������������������ ������������������������
* The second author's work is partially supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region, China (No.
HKUST758/96E). The third author's work is partially supported by a grant from Sino Software Research Institute (No. SSRI97/98.EG02).
1 On leave from the School of Computing, The National University of Singapore.
2 Currently a visiting scholar at the Department of Computer Science, The Hong Kong University of Science and Technology.

Abstract
While the B-tree (or the B+-tree) is the most popular index
structure in disk-based relational database systems, the T-
tree has been widely accepted as a promising index
structure for main memory databases where the entire
database (or most of them) resides in the main memory.
However, most work on the T-tree reported in the literature
did not take concurrency control into consideration. In this
paper, we report our study on the performance of the main
memory database index structure that allows concurrent
accesses of multiple users. Two concurrency control
approaches over the T-tree are presented. The results of a
simulation study indicate that the B-link tree, a variant of
the widely used B-tree index will outperform the T-tree if
concurrency control is enforced. This is due to the fact that
concurrency control over a T-tree requires more lock
operations than that of a B-link tree, and the overhead of
locking and unlocking is high.

1. Introduction

For the past decade, an important assumption of

database research and development is that most of the data
of a database are on disk. With the advent of the hardware
technology, computer systems with main memory size in
the order of magnitude of gigabytes are available
nowadays. The increasing availabili ty of large and
relatively cheap memory makes it possible to have main
memory databases (MMDB) where all data reside in main
memory, which provides significant additional
performance benefits as shown in [8, 16]. In fact, MMDB
has been receiving the attention of database researchers for
the past decade [6, 1, 3, 10, 17, 4].

When the entire database resides in the main memory,
related techniques developed under the assumption of disk
I/O as the main cost of database operations should be re-

examined. Among the others, index structures that affect
the overall system performance heavily has been one of the
research focuses. In the early 90's, Lehman and Carey
proposed the T-tree as an index structure for main memory
database [15]. Because of its good overall performance, the
T-tree has been widely accepted as a major MMDB index
structure. It was adopted by several systems, including the
main memory relation manager (MMM) of the Starburst
system from IBM Almaden Research Center [17] and the
Dali system from the AT&T Bell Laboratories [11, 4, 22].

The work reported in this paper is motivated by our
observation that, in contrast to a large amount of research
work on the concurrent B-tree [5, 19, 23, 18, 20, 12, 13,
24], little work has been reported on the study of the
concurrent T-tree [14, 17, 8]. As pointed by Lehman et al.
[17] and Gottemukkala et al. [8], once the I/O bottleneck of
paging data into and out of the main memory are removed,
some other factors such as latching and locking dominate
the cost of database access. Since the concurrent access of
the T-tree may require latching and locking intensively, the
performance of the T-tree should be somehow affected in
such an environment. Although previous work has
demonstrated that the T-tree provides a better performance
than the B-tree [15], the performance study did not
consider the effects of concurrent access of the indexes.

In this study, we have investigated the performance
issue of the T-tree when the concurrent access from
multiple users is allowed. Motivated by the good
performance of the B-link tree [19, 23, 18], we modified
the T-tree into the T-tail tree. The T-tail tree allows an
extra tree node to be linked to a T-tree node when the T-
tree node overflows, to delay the tree rotating operation.
Two concurrency control mechanisms were proposed. A
performance study was conducted to compare the
performance of the T-tail tree and the B-link tree. To our
surprise is that the T-tail tree, and hence the T-tree, does
not provide a better performance than the B-link tree

because of the high cost of locking and unlocking required
to enforce concurrency control.

The rest of this paper is organized as follows. Section 2
describes the T-tail tree index structure and its concurrent
access algorithms. A simulation model, experiments
conducted, and the results are given in Section 3. Finally,
Section 4 concludes the paper.

2. T-tree, T-tail tree and concurrent
operations

In this section, we first briefly describe the structure of
the T-tree index and its variation, the T-tail tree.
Afterwards, we propose two mechanisms that allow
concurrent operations including both search and
modification on the tree while maintaining the consistency.

2.1. T-tree and T-tail tree

The T-tree [15], rooted in the AVL tree [2] and the B-
tree [5], is a balanced binary tree whose nodes contain
more than one item. Figure 2.1 (a) depicts a T-node, a node
of a T-tree. A T-node consists of a number of data pointers,
three data fields, 1 parent pointer, 0-1 tail pointer, and 0-2
child pointers. An internal T-node has two child pointers

pointing to its left and right subtrees, respectively. A leaf
T-node has no child pointers. A T-node may have only one
child pointer and is called half-leaf node. The data pointers
in a T-node point to the corresponding data entries in the
memory, thus through the data pointers, the corresponding
data entries and their keys can be accessed. There are also
two special fields minK and maxK in each T-node that store
the minimum and maximum key values in the node,
respectively. For a node T and a value K, if minK ≤ K ≤

maxK, then we say that node T bounds the value K.
Another special data field is the balance factor, bf, which is
the value of the right subtree height minus the left subtree
height. The height of a tree is defined to be its maximum
level, the length of the longest path from the root to a leaf
node. Since a T-tree is a balanced binary tree, the balance
factor, bf, can only be +1, 0, or –1. For each internal node
A, there exists a corresponding leaf (or half-leaf) node that
holds a data pointer to the data entry with a key value that
is the predecessor to the minK of A. This node is named the
predecessor of A. Similarly, the node holding the data
pointer to the data entry with a key value that is the
successor to maxK of A, is called the successor of A.

A minimum count and a maximum count are associated
with a T-tree. Internal nodes keep their occupancy (i.e. the
number of data pointers in the node) in this range. When
the number of data pointers in a node is smaller than the
minimum count or larger than the maximum count, the
node is said to be underflow or overflow, respectively. In
general, a node is not full . That is, the number of data
pointers in it is kept less than the node size, the maximum
number of data pointers a node can have. During the
insertion operation, the corresponding data pointer will be
inserted into the node that bounds the key value of the
entry. When a data pointer is to be inserted into a node that
is full, it may cause inserting a new node into the tree.
Inserting a new node not only requires redistributing data
pointers between the overflowed node and the new node,
but also require moving the nodes around, i.e., to rotate the
tree to keep the tree balance. Similarly, deletions may
cause node underflow or empty, which may give rise to the
deletion of a node. Deleting a node may also cause the tree
to be rotated for keeping the balance.

Frequent tree rotations wil l degrade system
performance. In observation of that tree rotations are
induced by node overflow and underflow, which are
consequences of insertion or deletion in nodes with fixed
size, we allow the node size to be changed dynamically. In
our implementation, a T-node is allowed to have one T-tail,
in which some data pointers can be inserted. A T-tail bears
the same structure as a T-node, but only its data pointer
storage space is used. During an insertion operation, if the
node is full , a tail is created for it, and then all insertions on
the node can be operated on its tail . A T-node is said to be
completely full if both the T-node itself and its tail are full.
Fully tail will be inserted into the tree as a new T-node
later. If a deletion causes the node underflow, then data
pointers in its tail wil l be moved into it and empty tail will
be deleted. Note that data pointers in the T-node and its tail
are sorted by the key values of the corresponding data
entries. Also minK and maxK of the T-node should bound
all the key values of the corresponding data entries with
pointers in the T-node and its tail. We name such index
structure T-tail tree. A T-tail is given in Figure 2.1 (b). It is
expected that our implementation will reduce the

�

 Figure 2.1 Structure of a T-node

GDWDL�mink data
1
 …… data

k
 maxk �

�

GDWDL�

�

���bf �

��tail ptr

parent ptr

left child� ptr right child ptr

(a) A T-node

GDWDL�data
1
 data

2
 ……�data

j
 � �

� �

��� �

(b) A T-tail

possibility of tree rotations, hence increasing the
performance [21].

To enforce concurrent access over a T-tail tree, we
employ a locking mechanism. For simplicity, we use only
three types of locks, the shared lock (S-lock), the shared
and intention exclusive lock (SIX-lock), and the exclusive
lock (X-lock), which were originally used in hierarchical
locking protocols [9]. Their compatibili ty relations are the
same as in the original work. That is, shared locks are
compatible with themselves and shared and intention
exclusive locks. Exclusive locks are incompatible with
themselves and all other locks. Shared and intention
exclusive locks are compatible with shared locks but
incompatible with themselves.

We propose two approaches to enforce concurrent
access over a T-tail tree; one is pessimistic and the other is
optimistic. For the pessimistic approach, it is assumed that
confli cts among tree operations are inevitable and lead to
undesirable situations, such as creating inconsistent data or
deadlock. Each concurrent operation tries to prevent the
happening of such situations. In this approach, search
operation use lock-coupling in their descent from the root
to the bounding node, the node that bounds the key value of
the data entry in the operation. During update operation
(insertion or deletion), all nodes on the way from the parent
of the critical node to the bounding node are locked using
SIX-locks to prepare for a possible tree rotation. A critical
node is the nearest ancestor of the bounding node whose
balance factor equals to 1 or –1. If a tree rotation does
occur later, all these SIX-locks will be converted to X-
locks. Actually, tree rotations rarely happen over the T-tail
tree. Thus this approach handles concurrent access over the
tree in a pessimistic way. In the other extreme, the
optimistic approach assumes that concurrent operations
over a T-tail tree do not interfere with each other, and it
allows operations to complete without worrying about
possible conflicts. If the bounding node is completely full
during insertion, the whole tree will be exclusively locked
by the operation and the tree is fixed. During tree fixing, all
the T-tails are inserted to its successor as a T-node, and
empty nodes and tails are deleted. In the following two
sections, we will present the algorithms for the two above-
mentioned approaches.

2.2. The pessimistic approach

As the T-tree, and hence the T-tail tree, is evolved from

the AVL tree, the pessimistic concurrent operations over
them are similar to those on the AVL tree [7]. A search
gets an S-lock on the root first. Then it searches down from
the root to the bounding node and lock-couples its way
with S-locks. Finally it searches the bounding node. During
an update operation, the updater first takes the root as a
potential critical node and gets an SIX-locks on it. Then it
searches down from the root and gets an SIX-lock on each

node on the way. If a new node whose balance factor is not
equal to 0 is found, then this node is taken as the potential
critical node. All SIX-locks on the ancestors of the parent
of this potential critical node are released. Finally, an X-
lock should be obtained on the bounding node and the
operation is performed on it. Later on, if a tree rotation
occurs, all the SIX-locks on the nodes from the parent of
the critical node to the bounding node wil l be converted to
X-locks and the tree is rotated. The algorithms are
described in the followings.

Search. The concurrent searching in a T-tail tree is
similar to searching in an AVL tree. The main differences
are that the locking mechanism has to be used and the tail
has to be searched. The algorithm works as follows:
(1) The search always starts at the root of the tree, and an

S-lock should be gotten on the root first.
(2) Search down from the root and lock-couple the way

using S-locks.
(3) If the search key value is less than the minK of the

current node, then search down its left-subtree. Else,
if the search key value is greater than the maxK of the
current node, then search down its right-subtree. Else,
search the current node and its tail (if any).

(4) After the search is performed, the S-lock on the
current node should be released.

The search fails when a node and its tail (if any) are
searched and the corresponding data pointer cannot be
found or when a node that bounds the search key value
cannot be found.

Insertion. The insertion operation uses SIX-locks and
X-locks to enforce concurrency control. It begins with a
search to locate the bounding node. If the bounding node is
not completely full, the data pointer to the data entry is
inserted into the bounding node. Else, if the bounding node
is completely full, then its tail will be removed from the
bounding node and inserted into its successor as a new T-
node. The pointer is inserted into either the original
bounding node or the new T-node, depending on which one
bounds its key value. The balance of the tree is checked
then. If the T-tail tree is unbalanced as a consequence of
the insert operation, a tree rotation wil l be performed.
During this process, many locking, unlocking, and lock
converting steps are involved. We describe the insertion
algorithm in more details as follows:
(1) The search starts at the root of the tree, an SIX-lock

is placed on the root, and takes the root as a potential
critical node.

(2) Search down the tree for the bounding node. During
this process, all nodes from the parent of the critical
node to the bounding node are locked using SIX-
locks. If some node whose balance factor is not 0 is
found on the way, this node becomes the potential
critical node. All the SIX-locks on the ancestors of the
parent of this new potential critical node will be
released. If the search exhausts the tree and no node

bounds the key value of the data entry, the last node
on the search path is assigned as the bounding node.

(3) If the bounding node is found and is not completely
full, the SIX-lock on the bounding node is converted
to the X-lock and the corresponding data pointer is
inserted into it. Release all the locks and terminate.

(4) If the bounding node is completely full, then search
for the successor of the bounding node li ke in (2) but
the lock on the bounding node is kept. Then the SIX-
locks on the bounding node and the successor are
converted into the X-locks. The tail of the bounding
node is moved off and inserted into the successor as a
leaf node. The data pointer wil l be inserted into the
bounding node or the new child node, depending on
which one bound the searched key value. Then the
balance of the tree is checked.

(5) If a new leaf was added, then check the tree for
balance by following the path from the leaf to the
critical node. For each node on the way from the leaf
to the critical node, if the two subtrees of a node differ
in depth by more than two levels, then the SIX-locks
on the nodes from the parent of the critical node to the
current node are converted into X-locks and a tree
rotation must be performed. Once one rotation is
done, the tree is rebalanced. Release all the locks and
terminate.

Deletion. The deletion algorithm works similar as the
insertion algorithm in the way of locking and processing.
During the operation, the data pointer to be deleted is
searched for, the operation is performed, and then
rebalancing is done if necessary. If the deletion does not
cause an underflow, then simply delete the data pointer. If
it causes an underflow in an internal node, then borrow the
data pointer to the data entry with maximum key value in
its predecessor. Otherwise, if a deletion makes some leaf
node empty, the node will be deleted, the tree should be
rebalanced, and rotated if necessary. The algorithm works
as follows:
(1) and (2) are the same as in the insertion algorithm. If

the bounding node cannot be found, end with failure.
(3) If the bounding node is found and the deletion will

not cause it underflow, the SIX-lock on the bounding
node converted into the X-lock. The data pointer to
the corresponding data entry is deleted from it.
Release all the locks and terminate.

(4) If the bounding node is an internal node and the
deletion wil l makes it underflow, then search for the
predecessor of the bounding node like in (2) but the
lock on the bounding node is kept. All the SIX-locks
on the nodes from the bounding node or the parent of
the critical node to the predecessor are converted into
the X-locks. The data pointer to the data entry with
the maximum key value in the predecessor is moved
to the bounding node. If the predecessor is a leaf and

the deletion makes it empty, then the operation deletes
it and the balance of the tree is checked.

(5) If the bounding node is not an internal and the
deletion makes it empty, then delete the leaf node or
replace the half-leaf with its left child. Then the
balance of the tree is checked.

(6) If a leaf was removed, then check the tree for balance
as in (5) of the insertion algorithm.

The tree balancing and rotating are the same as in [15],
thus we omit it here.

2.3. Optimistic approach

For the optimistic approach, at most one node is locked

at a time by an update operation, and search operation does
not lock any node at all. It allows empty nodes existing in
the tree temporarily. Under such condition, operations are
running with maximum concurrency. Only when we try to
insert a data pointer into a completely full T-node, the
whole tree will be exclusively locked by the operation and
the tree is fixed. During the fixing phase, all the tail nodes
created after the last tree fixing are adjusted; empty nodes
and tails are deleted. Tree balance is checked and rotation
is done if necessary.

In this approach, some additional data structures are
used. One is the fixing flag. It is a logical variable to
indicate whether the tree is being fixed (fixing flag equals
to TRUE) or normal used (fixing flag equals to FALSE).
The count is used to record the number of operations
currently operating over the tree. A semaphore is used to
protect fixing flag and count from being operated by more
than one operation at a time. Three node pointer pools are
used. One is the New Node Pool (NNP) that is used to
record the newly created tails after the last tree fixing. The
second one is the Deallocated Node Pool (DNP) that is
used to record the empty tail s during the normal tree
operations. The third one is the Empty Node Pool (ENP)
that is used to record the empty T-nodes.

Search. The search operation is quite straightforward.
Before an operation performs on the tree, it will first
acquire a semaphore and check the fixing flag. If the fixing
flag is set to TRUE, then the operation releases the
semaphore and waits. Otherwise, it increases the count and
releases the semaphore. It then starts from the root and
searching for the bounding node. If the data entry has been
found, then it acquires the semaphore and decreases the
count. After releasing the semaphore, the operation ends
with success. Otherwise, it fails.

Insertion. The algorithm works as follows:
(1) The insertion operation searches for the bounding

node in the same way as the search operation.
(2) If the bounding node is found, then get an X-lock on

it. If the node is not completely full, then insert the
corresponding data pointer into it. If there is a newly
created tail , record it in the NNP. After releasing the

lock and decreasing the count, the operation ends with
success.

(3) If the node is completely full, then release the lock
and decrease the count. After setting the fixing flag to
TRUE and releasing the semaphore, wait until no
operation performs on the tree. Then fix the tree.
Finally, after resetting the fixing flag to FALSE,
resume the operation.

(4) If the search exhausts the tree and no node bounds the
key value of the data entry, then the last node on the
search path is locked using X-locks. If it is not
completely full , then process it li ke in (2). Otherwise,
conduct work as in (3).

Deletion. The deletion works in a straightforward
fashion. After finding the bounding node, it deletes the
corresponding data pointer directly. When the deletion
empties a T-node, it is recorded into the ENP. If the
deletion makes the tail of the node empty, then record the
tail node to the DNP to process it in later tree fixing. Note
that the tail cannot be deleted immediately since there may
be other operations working on it. It works as follows:
(1) The deletion operation searches for the bounding node

in the same way as the search operation.
(2) If the bounding node is found, then get an X-lock on

it. Delete the corresponding data pointer from the
node. If the deletion makes a T-node empty, it is
recorded in the ENP. If the deletion empties its tail,
then record the tail into the DNP. After releasing the
lock and decreasing the count, end with success.

(3) If the bounding node cannot be found, then release the
lock and decrease the count. End with failure.

Tree Fixing. The tree fixing algorithm rearranges the
tree. It checks the nodes recorded in the NNP to see if the
node can be merged in some way. Empty nodes in the DNP
and ENP are deleted. Check the tree balance and conduct
tree rotation if necessary. The algorithm works as follows:
(1) For each node in the NNP, try to merge it with its host

node. If all the data pointers in the tail can be merged
into its host node, then merge them into the host node
and the tail is deleted. Else, if the tail cannot be
merged into its host node, then insert it to the
successor of its host node. Check the tree for balance
and rotate the tree if necessary.

(2) For each node in the ENP, if it is empty, then replace
it with its predecessor and delete the predecessor.
Check the tree for balance and rotate the tree if
necessary.

(3) For each node in the DNP, if it is empty, then delete
it.

3. A Performance study

In order to investigate the performance of concurrent

access over the T-tail tree, a performance study was
conducted. We implemented the two concurrency control

approaches described in the previous section. As a
comparison, operations over the B+-tree [5] and the B-link
tree algorithms [23] were also implemented. Two groups of
experiments were conducted. The first group dedicated to
the performance of operations over the T-tail tree and the
B+-tree without concurrency control, and the second one
studied their performance with concurrency controls. The
algorithms were implemented in C++. All experiments
were conducted on a Pentium 233 computer with 64M
memory, running Linux OS in the single user mode.

3.1. Simulation model

Simulation Process. The simulation work consisted of a

number of experiments. Each experiment conducted in
three steps. In the first step, a tree was buil t (for different
experiment, the tree might be a T-tail, B+, or B-link tree) to
provide basic data structure for the experiment. A set of
operations (searches, insertions, and deletions) is then
performed on the tree. Finally, the experiment results were
collected.

Tree Initialization. Before each simulation, a tree was
buil t by inserting 0.5M (Million) data pointers to data
entries, whose keys were randomly selected from the key
space of 1 to 1M. To make the tree more realistic, 0.5M
update operations were then performed. In those operations
insertion and deletion had even distributions, thus about
0.25M insertions and the same number of deletions were
performed on the tree.

Simulation Model. Our model was a closed-queuing
model as outlined in Figure 3.1. There are a number of
terminals and each one performs some operations on the
tree. Each terminal issues a request, which is one of the tree
operations (search, insert, and delete). The request is
inserted into the Waiting CPU Queue (WCQ). The CPU is
scheduled using a round-robin discipline without
preemption. When the CPU becomes free, the first request
in the WCQ is assigned to it. If an operation cannot be

�

WLQ

COMMIT

BLOCK

 CPU

TERMINALS

Exceed
round
time

 Figure 3.1 Simulation model

finished in a round, it will be sent to the WCQ again. After
an operation is committed, the terminal waits for some time
and submits the next operation again.

For concurrent operations with concurrency control, a
lock manager [9] is used to maintain the locks. An
operation is blocked if it cannot obtain the required lock on
some resource. Then it is sent to the Waiting Lock Queue
(WLQ). It will be re-sent to the WCQ when the required
lock is available.

Measurements. During the experiments, we mentioned
the processing time, the tree height, and the number of tree
nodes. The processing time is the total time requested to
complete a certain number of operations.

3.2. The CPU cost for each basic operation

A tree operation consists of a number of basic

operations such as data comparison, pointer assignment,
arithmetic operation, acquisition and release of semaphore,
and locking and unlocking. Since all tree operations are
performed in memory, the processing times for each of
these basic operations decide the cost of each tree
operation. Thus it is important to identify the most
expensive basic operation. We conducted a set of simple
tests to measure the CPU costs for the five basic operations
mentioned above.

Table 3.1 CPU cost for each operation

Basic operations Time (x10-9 seconds)
Data Comparison 128
Pointer Assignment 4
Arithmetic Operation 55
Acquire and Release semaphore 8947
Lock and Unlock 17466

We employed a main function that looped to execute

each operation 1 giga (109) times. Also, an empty function
was called those times so as to measure the cost of a
function call . Finally, the cost of the function call was
subtracted from the cost of the executions of each
operation. The net cost of each operation is li sted in Table
3.1

3.3. Experiment results

The experiments were classified into two groups. In the

first group we investigated the performance of the T-tail
tree and the B+-tree without concurrency control. The
performance of concurrent accesses on the T-tail tree and
the B-link tree was studied in the second group of
experiments.

Performance of Tree Operations without
Concurrency Control. In this group of experiments,
operations were completed one by one without

concurrency. Only one operation was working on the tree
at any time. Under such settings, the algorithms operated
on the T-tail tree were almost the same as the original ones
proposed in [15]. The results of the T-tail tree are denoted
as the T-tail tree in the figures. For the B-tree, we used the
standard B+-tree algorithms in [5] (denoted as the B+-tree
in the figures). The purpose of this group of experiments
was to study the processing time, the number of nodes, and
the height of a tree while there was no concurrency control
enforced. The results are reported as follows.

Figure 3.2 presents the total processing time required for
0.5M (5x105) operations. We used a workload that the
update ratios were varied from 0 to 100%. For update, there
was the same number of insertions and deletions. In this
experiment, the fan-out and the size of the leaf node for the
B+-tree were 10, and the node size of the T-tail tree had the
same number. From the figure it can be seen that,
operations on the B+-tree always costs more than those on
the T-tail tree. The underlying reason is that, during a
search over the B+-tree, a linear (binary) search is
performed in every node before going to the next level. In
the T-tail tree, only two data comparisons (minK and
maxK) are conducted before going to the next level. Note
that, without concurrency control, data comparison is the
most expensive basic operation among the other basic
operations. With the increase of the number of the update
operations, node splits and concatenations occur frequently.
A node split or concatenation will cause a recursive
insertion or deletion of keys in some nodes, which may
involve a lot of data comparisons, thus imposes much
additional cost for the operation. For the T-tail tree,
rotations occur relatively infrequent and the search cost is
lower.

Given 0.5M data entries, Figure 3.3 depicts the numbers
of nodes for both the T-tail tree and the B+-tree, with
varying node sizes from 5 to 15. From the figure, we
observe that the B+-tree has far more nodes than the T-tail
tree when the node size is small. It is due to the fact that the
B+-tree puts all data in leaves and all internal nodes are
taken as index. Compared with the T-tail tree, the B+-tree

Figure 3.2 Processing time

1.7

1.9

2.1

2.3

2.5

0 20 40 60 80 100

Update Ratio (%)

T
im

e
(S

ec
on

ds
)

B+-tree

T-tail tree

holds additional nodes for indexing. With small node size,
there should be more leaf nodes than those with larger node
size. With the increase of node size, the node numbers for
both trees become smaller.

38000

88000

138000

188000

238000

288000

5 10 15
Node Size

T
he

 to
ta

l n
um

be
r

of
 n

od
es

B+-tree

T-tail tree

For varying node size, Figure 3.4 gives the tree heights
of both trees of 0.5M data entries. It is obvious that the T-
tail tree is much higher than the B+-tree. The reason is
straightforward. Since the T- tail tree is a balanced binary
tree and at each level there are only two subtrees. In that
sense, nodes ‘pile up’ much faster than the B+-tree for its
fanout and leaf node size were 10 in our experiment. For
operations without concurrency control, it is faster to
search in the T-tail tree than to search in the B+-tree, since
the former involves many relatively cheap pointer
assignments and fewer expensive data comparisons, the
later employs many expensive data comparisons. While
operations concurrent perform on the T-tail tree, the higher
tree height will reduce its performance heavily for the sake
of locking and unlocking. We wil l show this point in the
following group of experiments.

4

8

12

16

20

5 10 15
Node size

T
re

e
he

ig
ht

B+-tree

T-tail tree

Performance of Tree Operations with Concurrency
Control. In this group of experiments we investigated into
the performance of both the T-tail tree and the B-link tree
with presence of concurrent operations. A lock manager
was employed to maintain the lock resources. For the T-tail
tree, we implemented all the algorithms in both the
pessimistic and the optimistic approaches presented in
section 2. The experiment results of the pessimistic
approach and the optimistic approach are denoted as the T-

tree pessimistic and the T-tree optimistic in the figures,
respectively. For the B-tree, we implemented the B-link
tree algorithms [23], whose experiment results are denoted
as the B-link tree in the figures. In this group of
experiments, we studied the effects on the processing time
by varying the update ratio, number of operation, and tree
size.

 Figure 3.5 shows the effect on the processing time by
varying the update ratio. In the experiment, both the T-tail
tree and the B-link tree had the same number of data
pointers to data entries, 0.5M. The total number of
operations conducted on the trees were 0.5M. The node
size and the fan-out were 10. From the figure, it can be
seen that, the B-link tree algorithms and the T-tail tree
optimistic approach (optimistic approach hereafter) are
much better than the T-tail tree pessimistic approach
(pessimistic approach hereafter). For different update ratio,
the processing time for the pessimistic approach varied
from 136.6 seconds to 140.4 seconds. The time for the
optimistic approach was from 10.8 seconds to 19.6
seconds. For the B-link tree algorithms, it was only from
2.2 seconds to 11.3 seconds. That is, 5 or 10 times more
eff icient than the algorithms on the T-tail tree. It is because
pessimistic approach uses many expensive locking and
unlocking primitives in each operation. Even though the
optimistic approach uses fewer locking and unlocking, it
employs acquiring and releasing semaphore, the second
most expensive primitives. Moreover, it makes the tree
exclusively locked by some insertion operations, which
reduces the concurrency of the operations. On the contrary,
the B-link tree algorithms lock only one node
simultaneously.

0

40

80

120

160

0 20 40 60 80 100

Update Ratio (%)

T
im

e
(S

ec
on

ds
)

T-tree pessimistic
B-link tree
T-tree optimistic

Modifying the number of operations, we re-conducted
the experiments. The experimental results are presented in
Figure 3.6. The number of operations was varied from
0.1M to 1M. The workload consisted of search 80% and
10% each of insertion and deletion. From the figure, it can
be observed that the relations among these three curves are
the same as in the previous figure. For different number of
operations, the processing time for the pessimistic approach
varied from 27.4 seconds to 274.5 seconds, the time for the
optimistic approach from 2.5 seconds to 25.1 seconds, and

Figure 3.3 Number of nodes

 Figure 3.4 Tree height
 Figure 3.5 Effect of update ratio

that for the B-link tree algorithms was from 0.8 seconds to
8.0 seconds. The reason is that, since the workload and the
number of data entries in the tree are kept unchanged
during the experiment, each operation has the same cost in
each approach. But they are different for different
approaches. Thus the three curves increase linearly, but
with different trends.

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of operations (Millions)

T
im

e
(S

ec
on

ds
)

T-tree pessimistic
B-link tree
T-tree optimistic

We further varied the tree size and re-tested the algorithms
on the trees. The result is given in Figure 3.7. In this
experiment, the tree size was varied from 0.1M to 1M data
entries. The number of operations was 0.5M, and the
workload was the same as in the previous experiment.
From the figure, we observe that the relations among the
three curves are unchanged also. That is, the B-link tree
algorithms are the best, then the optimistic approach, and
the last one is the pessimistic approach. The reason is that,
with the increment of the tree size, the height of the T-tail
tree increased, thus giving rise to more overheads of the
locking and unlocking. On the other hand, the numbers of
the locking and unlocking in the other two approaches are
almost not affected by the varying of tree size. Therefore,
the processing time for the pessimistic approach is
increased with the growing of the tree size. But the times
for the other two approaches are almost unchanged.

0

50

100

150

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tree size (Millions)

T
im

e
(S

ec
on

ds
)

T-tree pessimistic
B-link tree
T-tree optimistic

Discussions. The experiments in the first group gave the
same conclusion as [15]. That is, the T-tail tree performs
better than B+-tree without concurrency control. However,
with concurrency control, it seems the B-link tree performs
better than the T-tail tree, and hence the T-tree. It can be
explained in the followings.

Lehman et al. [17] and Gottemukkala et al. [8] pointed
out that, locking and unlocking are the most expensive
operations in the main-memory data management system.
This is actually our test result presented in Table 3.1. Even
the values may be different for different system, but
locking and unlocking are several orders of magnitudes
more expensive than the other operations in our test. A
natural consequence of this observation is that, in main-
memory environment, any concurrency control mechanism
with more locking or unlocking should not perform better
than those with fewer locking and unlocking.

The pessimistic approach employs many locking and
unlocking operations. In the search phase, each operation
locks and unlocks every node on the way once. For update
operations, they will locks all the nodes from the critical
node to the bounding node simultaneously. However, for
the B-link tree algorithms, one update operation locks far
fewer nodes than that in the pessimistic approach. Even the
optimistic approach locks fewer nodes also, but it has to
acquire and release semaphore. Moreover, some insert
operations may exclusively lock the tree for fixing, which
decreases the performance. When the whole tree is taken as
a single node and each operation exclusively locks the
whole tree during its processing, the B-link tree still
outperforms the T-tail tree if the update ratio is not very
high [21].

The tree height is another factor that affects the
performance of the locking and unlocking in the T-tail tree.
Given a fixed number of data entries, a T-tail tree is much
higher than its B-link counterpart (see Figure 3.4). This
always leads to, the existence of a large number of nodes
on the way between the criti cal node to the bounding node,
which imposes much cost for the update operations. The
third factor that makes it difficult for designing
concurrency control mechanism on a T-tree is that, a tree
rotation always involves a critical node, which may be far
away from the bounding node. This makes the locking
mechanism hard to use and sometimes it has to lock more
nodes to avoid deadlock or lock conflicts.

To design concurrency control mechanism over T-trees,
two factors should be given much concentration. One is the
number of locks one operation should put on nodes and the
other is the degree of concurrency. These two factors may
affect the performance heavily as shown in our
experiments.

 Figure 3.6 Effect of the number of operations

 Figure 3.7 Effect of the tree size

4. Conclusions

In this paper we studied the performance of concurrent

operations over a T-tree, a well-known main memory
database indexing structure. Two concurrency control
approaches, the pessimistic approach and the optimistic
approach were presented. A simulation model was built to
investigate the performance of the B-tree and the T-tree
with different concurrency control approaches.

Without enforcing concurrency control mechanisms, our
results conform to the previous reported work. That is,
when the data reside in memory, the T-tree index does
outperform the B-tree index. However, when concurrency
control mechanisms are enforced, both pessimistic and
optimistic approaches make the T-tree index a worse index
structure than the B-tree index. The basic reason is that,
although the T-tree reduces comparison time within a node,
the overhead of a large number of locking and unlocking is
too high. Therefore, unless we can provide better
algorithms to reduce the number of locks, the concurrent B-
trees wil l outperform the T-trees.

References

[1] A. C. Ammann, M. B. Hanrahan, R. Krishnamurthy, “Design

of a Memory Resident DBMS”, Proc. IEEE COMPCON
Conf. Los Alamitos, CA, 1985 pp.54-57.

[2] A. Aho, J. Hoperoft, J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley Publishing
Company, 1974.

[3] D. Bitton, M. B. Hanrahan, C. Turbyfill, “Performance of
Complex Queries in Main Memory Database Systems”,
Proceedings of the International Conference On Data
Engineering, Los Angeles, California, 1987, pp. 72-81.

[4] P. Bohannon, D. Lieuwen, R. Rastogi, A. Silberschatz, S.
Seshadri, S. Sudarshan, “The Architecture of the Dalí Main-
Memory Storage Manager” , Multimedia Tools and
Applications, Volume 4, Number 2, 1997, pp. 115-151.

[5] D. Comer, “The Ubiquitous B-tree” , ACM Computer Surveys,
Volume 11, Number 2, June 1979, pp. 121-137.

[6] D. J. DeWitt et all., “ Implementation Techniques for Main
Memory Database Systems”, Proceedings of ACM-SIGMOD
Int’ l Conference on Management of Data, Boston, MA, June
1984, pp.1-8.

[7] C. S. Ellis, “Concurrent Search and Insertion in AVL-trees” ,
IEEE Transactions on Computers, Volume 29, Number 9,
September 1980, pp. 811-917.

[8] V. Gottemukkala, T. Lehman. “Locking and Latching in a
Memory-Resident Database System”, Proceedings of the 18th
International Conference on Very Large Databases,
Vancouver, British Columbia, Canada. 1992, pp.533-544.

[9] J. Gray, “Notes on Database Operating Systems”, Operating
Systems: An Advanced Course, Volume 60, Springer-Verlag,
New York, 1979.

[10] H. Garcia-Molina, K. Salem, “Main Memory Database
Systems: An Overview”, IEEE Transactions on Knowledge
and Data Engineering, Volume 4, Number 6, December
1992, pp. 509-516.

[11] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silberschatz,
S. Sudarshan, “Dali : A high Performance Main-Memory
Storage Manager” , Proceedings of the 20th International
Conference on Very Large Databases, Santiago, Chile,
1994, pp. 48-59.

[12] T. Johnson, D. Shasha, “A Framework for the Performance
Analysis of Concurrent B-tree Algorithms”, Proceedings of
ACM-SIGMOD Int’ l Conference on Management of Data,
Atlantic City, New Jersey, 1990, pp. 273-287.

[13] T. Johnson, D. Shasha, “The Performance of Current B-Tree
Algorithm”, ACM Transactions on Database Systems,
Volume 18, Number 1, 1993, pp.51-101.

[14] V. Kumar, “Concurrency Control and Recovery in Main
Memory Databases”, The Journal of Computer Information
Systems, Vol. 30, No. 3, USA, Spring 1990, pp. 24-30.

[15] T. J. Lehman, M. J. Carey, “A Study of Index Structures for
Main Memory Database Management Systems”, in
Proceedings 12th Int. Conf. On Very Large Database,
Kyoto, August 1986, pp. 294-303.

[16] T. J. Lehman, V. Gottemukkala, “The Design and
Performance Evaluation of a Lock Manager for a Memory-
Resident Database System”, V. Kumar (Ed.), Performance
of Concurrency Control Mechanisms in Centralised
Database Systems, Prentice-Hall , 1996. pp.406-428

[17] T. Lehman, E. J. Shekita, L. Cabrera, “An Evaluation of
Starburst’ s Memory Resident Storage Component” , IEEE
Transactions on Knowledge and Data Engineering, Volume
4, Number 6, December 1992, pp.555-566.

[18] V. Lanin, D. Shasha, “A Symmetric Concurrent B-Tree
Algorithm”. Proceedings of the Fall Joint Computer
Conference, Washington, DC, USA, 1986, pp. 380-389.

[19] P. L. Lehman, S. B. Yao, “Eff icient Locking for Concurrent
Operations on B-trees”, ACM Transactions on Database
Systems, Volume 6, Number 4, 1981, pp.650-670.

[20] C. Mohan, “ARIES/KVL: A key Value Locking Method for
Concurrency Control of Multiaction Transactions Operating
on B-tree Indexes”, Proceedings of the16th International
Conference on Very Large Databases, Australia,1990,
pp.392-405.

[21] Y. Y. Ng, “Concurrency Control on Index Structures for
Main Memory Database Management System”, Mphil
thesis, Department of Computer Science, the Hong Kong
University of Science and Technology, June 1999.

[22] R. Rastogi, S. Seshadri, P. Bohannon, D. Lieuwen, A.
Silberschatz, S. Sudarshan, “Logical and physical
versioning in main memory databases” , Proceedings of the
Twenty-Third International Conference on Very Large
Databases, Athens, Greece, 1997, pp.86-95.

[23] Y. Sagiv, “Concurrent Operations on B-Tree with
Overtaking” , Proceedings of ACM SIGACT/SIGMOD
Symposium on the Principles of Database Systems, ACM,
New York, 1985, pp. 28-37.

[24] V. Srinivassan, M. J. Carey, “Performance of B+ Tree
Concurrency Control Algorithms” , VLDB Journal, Volume
2, Number 4, 1993, pp. 361-406.

